PyFoil 1.2
Ecco la nuova versione della mia applicazione PyFoil, sviluppata in Python per Symbian S60.
Purtroppo a causa della mancanza di tempo non sono riuscito a completarla e sono presenti alcuni bug che segnalo stesso in questa pagina:
- I dati sulla pressione e la temperatura nella stratosfera non vengono calcolati correttamente
- Il calcolo del centro aerodinamico dell’ala non è corretto in caso di angolo di freccia
- Il calcolo del coefficiente di momento non è corretto
- È possibile settare i dati del piano di coda orizzontale, ma questi non vengono ancora utilizzati per fare calcoli
L’applicazione è comunque in grado di calcolare svariati parametri geometrici e aerodinamici sull’ala, impostandone caratteristiche alla radice e all’estremità.
Segue il codice del programma.
import e32
import graphics
import appuifw
from random import randint
from math import sqrt, sin, cos, tan, atan, log10, ceil, pi, e as E
def draw(r=None):
"""Draw the buffer on the canvas"""
if buffer:
c.blit(buffer)
c = appuifw.Canvas(redraw_callback=draw)
buffer = graphics.Image.new(c.size)
appuifw.app.body = c
width, height = c.size
# airfoil contains [NACA, digit, (t, m, p)]
# wing_G contains geometrical parameters about wing (b, br, ct, boh)
# wing_A contains aerodynamical parameters about wing (boh, ancora più boh)
airfoil = [None, None, [0, 0, 0]]
wing_G = [10., # Wingspan
1.6, # Chord root
0.8, # Chord tip
15., # Sweep angle
3.0, # Wing incidence
0.9, # Efficiency number
-3.0] # Twist angle
wing_A = [
# Root
[0.11, # Alfa lift coefficient
-0.07, # Zero-lift moment coefficient
-1.0, # Alfa zero lift
0.25], # Aerodynamic center position
# Tip
[0.105, # Clat
-0.08, # Cm0t
-2.5, # azlt
0.23] # xact
]
fuselage = [-0.05, # Zero lift moment coefficient
0.0035] # Alpha moment coefficient
tail = [[], # Horizontal
[]] # Vertical
def derivative(func, x):
"""Derivates a function in a point"""
return (func(x) - func(x+0.001))/0.001
def integrate(func, interval):
"""Trapezoidal numerical integration"""
a, b = interval
a = float(a)
b = float(b)
# Splits interval in 500 points per unit
if abs(b - a) < 1e-5:
return 0
points = (b - a)*500.0
increment = (b - a)/points
area = 0.0
for i in xrange(points):
i = float(i)
x = b * i/points + a * (1.0 - i/points)
# Jump a possibile discontinuity
try:
area += (func(x+increment) + func(x)) * increment / 2.0
except:
pass
return area
def mean_line(x, airfoil):
"""Airfoil mean line function"""
digit = airfoil[1]
t, m, p = airfoil[2]
if digit == 4:
if p < 1e-5:
return 0
elif x <= p:
return m / (p**2) * (2*p*x - x**2)
elif x > p:
return m * (1 - 2*p + 2*p*x - x**2) / ((1 - p)**2)
elif digit == 5:
if x <= m:
return p / 6 * (x**3 - 3*m*x**2 + m**2 * (3 - m)*x)
elif x > m:
return p * m**3 / 6*(1 - x)
def thickness(x, airfoil):
"""Airfoil thickness function"""
t = airfoil[2][0]
return t / 0.2 * (+0.2969 * x**0.5 +
-0.1260 * x**1 +
-0.3516 * x**2 +
+0.2843 * x**3 +
-0.1015 * x**4)
def NACA_set():
"""Set NACA to operate"""
global airfoil
NACA = appuifw.query(u'Insert 4-5 digit NACA', 'number')
if NACA:
digit = ceil(log10(NACA))
# Digit correction for 00XX and 000X
if digit in [1, 2, 3]: digit = 4
t = (NACA%100)/100. # Thickness
if digit == 4:
m = (NACA/1000)/100. # Max camber
p = (NACA/100-NACA/1000*10)/10. # Max camber position
airfoil = [NACA, digit, (t, m, p)]
NACA_plot()
elif digit == 5:
mean_line_datas = {210:[0.0580, 361.4],
220:[0.1260, 51.64],
230:[0.2025, 15.957],
240:[0.2900, 6.643],
250:[0.3910, 3.230]}
try:
m = mean_line_datas[NACA/100][0]
p = mean_line_datas[NACA/100][1]
airfoil = [NACA, digit, (t, m, p)]
NACA_plot()
except KeyError:
appuifw.note(u'NACA not supported!', 'error')
else:
appuifw.note(u'NACA must be 4 or 5 digit!', 'error')
else:
appuifw.note(u'NACA must be 4 or 5 digit!', 'error')
def NACA_plot():
"""Plots a NACA"""
if not airfoil[0]:
NACA_set()
if not airfoil[0]:
return
buffer.clear()
# NACA parameters
NACA, digit, N = airfoil
font = (None, 30)
color0 = (0, 0, 0) # Text color
color1 = (0, 0, 255) # Airfoil color
color2 = (255, 0, 0) # Meanline color
color3 = (100, 100, 100) # Radius color
# Draws the axes
s_width = width - 10 # Scaled width, for the border
y0 = height/2 # Origin of axes
buffer.line((0, y0, width, y0), outline=color0)
# Draws the scale
unit = 10 # Axis will be divided into %unit part
for u in range(11):
buffer.line((5 + u * s_width / unit, y0 - 2,
5 + u * s_width / unit, y0 + 2),
outline=color0)
# Unit legend
buffer.line((10, 2*y0 - 20,
10 + s_width/unit, 2*y0 - 20),
outline=color0)
buffer.text((20 + s_width/unit, 2*y0 - 15),
u'%d%% of the chord' % (100/unit),
fill=color0)
# Displays infos about the airfoil
radius = 1.1019 * N[0]**2
radius_pos = (5, y0 - radius*s_width,
5 + radius*s_width*2, y0 + radius*s_width)
buffer.ellipse(radius_pos, outline=color3)
buffer.text((10, 30), u'NACA %0#4d' % NACA, font=font, fill=color0)
buffer.text((10, 55), u'LE radius: %.4f' % radius, fill=color0)
# Plot
for x in xrange(s_width):
x = float(x)/s_width
# xx is an increment of x to calculate next point of each segment
xx = (x * s_width + 1) / s_width
# Meanline
xM_1 = 5 + x * s_width
yM_1 = y0 - mean_line(x, airfoil) * s_width
xM_2 = 5 + xx * s_width
yM_2 = y0 - mean_line(xx, airfoil) * s_width
buffer.line((xM_1, yM_1, xM_2, yM_2), outline=color2)
# Airfoil (U: Upper, L: Lower, 1-2 are 1st and 2nd point of the line)
teta = atan(derivative(lambda x: mean_line(x, airfoil), x))
xU_1 = 5 + (x - thickness(x, airfoil)*sin(teta)) * s_width
yU_1 = y0 - (mean_line(x, airfoil) -
thickness(x, airfoil)*cos(teta)) * s_width
xL_1 = 5 + (x + thickness(x, airfoil)*sin(teta)) * s_width
yL_1 = y0 - (mean_line(x, airfoil) +
thickness(x, airfoil)*cos(teta)) * s_width
xU_2 = 5 + (xx - thickness(xx, airfoil)*sin(teta)) * s_width
yU_2 = y0 - (mean_line(xx, airfoil) -
thickness(xx, airfoil)*cos(teta)) * s_width
xL_2 = 5 + (xx + thickness(xx, airfoil)*sin(teta)) * s_width
yL_2 = y0 - (mean_line(xx, airfoil) +
thickness(xx, airfoil)*cos(teta)) * s_width
buffer.line((xU_1, yU_1, xU_2, yU_2), outline=color1, width=2)
buffer.line((xL_1, yL_1, xL_2, yL_2), outline=color1, width=2)
draw()
def NACA_export():
"""Export NACA plot as image"""
if not airfoil[0]:
NACA_set()
if not airfoil[0]:
return
new_width = appuifw.query(u'Image width (px)', 'number', 800)
new_height = new_width / 1.4
image = graphics.Image.new((new_width, new_height))
image.clear()
# NACA parameters
NACA, digit, N = airfoil
font = (None, 30)
color0 = (0, 0, 0) # Text color
color1 = (0, 0, 255) # Airfoil color
color2 = (255, 0, 0) # Meanline color
color3 = (100, 100, 100) # Radius color
# Draws the axes
s_width = new_width - 10 # Scaled width, for the border
y0 = new_height/2 # Origin of axes
image.line((0, y0, new_width, y0), outline=color0)
# Draws the scale
unit = 10 # Axis will be divided into %unit part
for u in range(11):
image.line((5 + u * s_width / unit, y0 - 2,
5 + u * s_width / unit, y0 + 2),
outline=color0)
# Unit legend
image.line((10, 2*y0 - 20,
10 + s_width/unit, 2*y0 - 20),
outline=color0)
image.text((20 + s_width/unit, 2*y0 - 15),
u'%d%% of the chord' % (100/unit),
fill=color0)
# Displays infos about the airfoil
radius = 1.1019 * N[0]**2
radius_pos = (5, y0 - radius*s_width,
5 + radius*s_width*2, y0 + radius*s_width)
image.ellipse(radius_pos, outline=color3)
image.text((10, 30), u'NACA %0#4d' % NACA, font=font, fill=color0)
image.text((10, 55), u'LE radius: %.4f' % radius, fill=color0)
# Plot
for x in xrange(s_width):
x = float(x)/s_width
# xx is an increment of x to calculate next point
xx = (x * s_width + 1) / s_width
# Meanline
xM_1 = 5 + x * s_width
yM_1 = y0 - mean_line(x, airfoil) * s_width
xM_2 = 5 + xx * s_width
yM_2 = y0 - mean_line(xx, airfoil) * s_width
image.line((xM_1, yM_1, xM_2, yM_2), outline=color2)
# Airfoil (U: Upper, L: Lower, 1-2 are 1st and 2nd point of the line)
teta = atan(derivative(lambda x: mean_line(x, airfoil), x))
xU_1 = 5 + (x - thickness(x, airfoil)*sin(teta)) * s_width
yU_1 = y0 - (mean_line(x, airfoil) -
thickness(x, airfoil)*cos(teta)) * s_width
xL_1 = 5 + (x + thickness(x, airfoil)*sin(teta)) * s_width
yL_1 = y0 - (mean_line(x, airfoil) +
thickness(x, airfoil)*cos(teta)) * s_width
xU_2 = 5 + (xx - thickness(xx, airfoil)*sin(teta)) * s_width
yU_2 = y0 - (mean_line(xx, airfoil) -
thickness(xx, airfoil)*cos(teta)) * s_width
xL_2 = 5 + (xx + thickness(xx, airfoil)*sin(teta)) * s_width
yL_2 = y0 - (mean_line(xx, airfoil) +
thickness(xx, airfoil)*cos(teta)) * s_width
image.line((xU_1, yU_1, xU_2, yU_2), outline=color1, width=2)
image.line((xL_1, yL_1, xL_2, yL_2), outline=color1, width=2)
file_name = appuifw.query(u'Insert file name', 'text', u'.png')
file_path = u'C:\\%s' % file_name
image.save(file_path)
del image
appuifw.note(u'Image saved at C:\\%s' % file_name, 'info')
# Ask if want to send the file
if appuifw.query(u'Send the file via BT?', 'query'):
try:
import btsocket as socket
except ImportError:
import socket
address, services = socket.bt_obex_discover()
channel = services.items()[0][1]
try:
socket.bt_obex_send_file(address, channel, file_path)
except error:
appuifw.note(error.decode('utf-8'), 'error')
def ISA(z):
"""International standard atmosphere"""
T_sl = 288.15 # Kelvin
p_sl = 101325.0 # Pascal
rho_sl = 1.225 # kg/m^3
# Air gas constant: 287 J / (kg * K)
T = T_sl - 6.5 * (z/1000.0) # Thermal gradient: -6.5 K/km
p = p_sl * (T/T_sl) ** (9.81 / 287 / 6.5e-3)
rho = rho_sl * (T/T_sl) ** (9.81 / 287 / 6.5e-3 - 1)
# Troposphere
#if z < 11000:
# T = T_sl - 6.5 * (z/1000.0) # Thermal gradient: -6.5 K/km
# p = p_sl * (T/T_sl) ** (9.81 / 287 / 6.5e-3)
# rho = rho_sl * (T/T_sl) ** (9.81 / 287 / 6.5e-3 - 1)
## Stratosphere
#elif z >= 11000 and z < 20000:
# T = 216.65
# p = 2270 * E ** (-9.81 / 287 / 6.5e-3 * (z-11000))
# rho = 0.2978 * E ** (-9.81 / 287 / 6.5e-3 * (z-11000))
#elif z >= 20000:
# # Up 20000 m thermal gradient is approximated
# T = 216.65 + 0.98 * (z-20000)/1000.0 # Thermal gradient: ~ 0.98 K/km
# p = 2270 * E ** (-9.81 / 287 / 6.5e-3 * (z-11000))
# rho = 0.2978 * E ** (-9.81 / 287 / 6.5e-3 * (z-11000))
return (T, p, rho)
def Reynolds():
"""Shows a form to calculate dimensionless quantity"""
fields = [(u'Speed [m/s]', 'float', 0.0),
(u'Density [kg/m^3]', 'float', 0.0),
(u'D. viscosity [Pa*s]', 'float', 0.0),
(u'Linear dimension [m]', 'float', 0.0)]
flag = appuifw.FFormEditModeOnly + appuifw.FFormDoubleSpaced
form = appuifw.Form(fields, flag)
form.execute()
# Result
speed, density, viscosity, linear_d = [i[2] for i in list(form)]
reynolds = density * speed * linear_d / viscosity
appuifw.query(u'Reynolds:', 'text', unicode(reynolds))
appuifw.query(u'Reynolds (exp):', 'text', u'%.0e' % reynolds)
def Mach():
"""Shows a form to calculate dimensionless quantity"""
fields = [(u'Speed [m/s]', 'float', 0.0),
(u'Sound speed [m/s]', 'float', 0.0),
(u'* Temperature [degC]', 'float', 0.0),
(u'* Altitude [m]', 'float', 0.0)]
flag = appuifw.FFormEditModeOnly + appuifw.FFormDoubleSpaced
form = appuifw.Form(fields, flag)
appuifw.note(u'You may use temp. or alt. instead of sound speed', 'info')
form.execute()
# Result
speed, sound_speed, temperature, altitude = [i[2] for i in list(form)]
if sound_speed < 1e-5:
if temperature != 0.0:
# Air gas constant: 287 J / (kg * K)
sound_speed = (1.4 * 287 * (273.15+temperature)) ** 0.5
elif altitude != 0.0:
sound_speed = (1.4 * 287 * ISA(altitude)[0]) ** 0.5
else:
appuifw.note(u'Not enough parameters', 'error')
mach = speed / sound_speed
appuifw.query(u'Mach:', 'text', unicode(mach))
def Froude():
"""Shows a form to calculate dimensionless quantity"""
fields = [(u'Speed [m/s]', 'float', 0.0),
(u'\u0394 z [m]', 'float', 0.0),
(u'Gravity [m/s^2]', 'float', 9.81)]
flag = appuifw.FFormEditModeOnly + appuifw.FFormDoubleSpaced
form = appuifw.Form(fields, flag)
form.execute()
# Result
speed, linear_d, gravity = [i[2] for i in list(form)]
froude = speed * speed / gravity / linear_d
appuifw.query(u'Froude:', 'text', unicode(froude))
def wing_set(type, par):
"""
Set the geometrical or aerodynamical parameters for the wing
type can be:
- 'geom': geometrical parameters
- 'aero_r': aerodynamic of root chord
- 'aero_t': aerodynamic of tip chord
wing_G contains:
- b: wingspan
- cr: chord at root
- ct: chord at tip
- sweep: sweep angle from leading edge
- iw: angle of incidence of wing (at root chord)
- ew: efficiency number for non-elliptical wings
- eps: angle of twist
wing_A cointains:
- wing_A[0]: aerodynamical parameters at root chord
- wing_A[1]: aerodynamical parameters at tip chord
parameters ending with *r are referred to the root chord
parameters ending with *t are referred to the tip chord
"""
global wing_G, wing_A, fuselage, tail
# Set geometrical parameters
if type == 'geom':
# Set all parameters
if par == 'all':
fields = [(u'Wingspan [m]', 'float', wing_G[0]),
(u'Chord root [m]', 'float', wing_G[1]),
(u'Chord tip [m]', 'float', wing_G[2]),
(u'Sweep angle [deg]', 'float', wing_G[3]),
(u'Wing incidence [deg]', 'float', wing_G[4]),
(u'Efficiency number [ ]', 'float', wing_G[5]),
(u'Twist angle [deg]', 'float', wing_G[6])]
flag = appuifw.FFormEditModeOnly + appuifw.FFormDoubleSpaced
form = appuifw.Form(fields, flag)
form.execute()
# Result
wing_G = b, cr, ct, sweep, iw, ew, eps = [i[2] for i in list(form)]
# Set a specific parameter
elif par == 'wingspan':
b = appuifw.query(u'Set wingspan [m]:', 'float', wing_G[0])
wing_G[0] = b
elif par == 'chords':
cr = appuifw.query(u'Set root chord [m]:', 'float', wing_G[1])
ct = appuifw.query(u'Set tip chord [m]:', 'float', wing_G[2])
wing_G[1] = cr
wing_G[2] = ct
elif par == 'sweep':
sweep = appuifw.query(u'Set sweep [deg]:', 'float', wing_G[3])
wing_G[3] = sweep
elif par == 'incid':
incidence = appuifw.query(u'Set wing incidence [deg]:',
'float', wing_G[4])
wing_G[4] = incidence
elif par == 'effic':
effic = appuifw.query(u'Set efficiency number [ ]:',
'float', wing_G[5])
wing_G[5] = effic
elif par == 'twist':
twist = appuifw.query(u'Set twist angle [deg]:',
'float', wing_G[6])
wing_G[6] = twist
wing_draw()
# Set aerodynamical parameters for root
elif type == 'aero_r':
# Set all parameters
if par == 'all':
fields = [(u'Alfa lift coeff. [1/deg]', 'float', wing_A[0][0]),
(u'Zero-lift moment coeff. [ ]', 'float', wing_A[0][1]),
(u'Alfa zero lift [deg]', 'float', wing_A[0][2]),
(u'Aero. center pos. [of Cr]', 'float', wing_A[0][3])]
flag = appuifw.FFormEditModeOnly + appuifw.FFormDoubleSpaced
form = appuifw.Form(fields, flag)
form.execute()
# Result
wing_A[0] = Clar, Cm0r, azlr, xacr = [i[2] for i in list(form)]
# Set a specific parameter
elif par == 'copy':
wing_A[0] = wing_A[1]
elif par == 'Clar':
Clar = appuifw.query(u'Set alfa lift coeff. [1/deg]:',
'float', wing_A[0][0])
wing_A[0][0] = Clar
elif par == 'Cm0r':
Cm0r = appuifw.query(u'Set zero-lift moment coeff. [ ]:',
'float', wing_A[0][1])
wing_A[0][1] = Cm0r
elif par == 'azlr':
azlr = appuifw.query(u'Set alfa zero lift [deg]:',
'float', wing_A[0][2])
wing_A[0][2] = azlr
elif par == 'xacr':
xacr = appuifw.query(u'Set aero. center pos. [of Cr]:',
'float', wing_A[0][3])
wing_A[0][3] = xacr
# Set aerodynamical parameters for tip
elif type == 'aero_t':
# Set all parameters
if par == 'all':
fields = [(u'Alfa lift coeff. [1/deg]', 'float', wing_A[1][0]),
(u'Zero-lift moment coeff. [ ]', 'float', wing_A[1][1]),
(u'Alfa zero lift [deg]', 'float', wing_A[1][2]),
(u'Aero. center pos. [of Ct]', 'float', wing_A[1][3])]
flag = appuifw.FFormEditModeOnly + appuifw.FFormDoubleSpaced
form = appuifw.Form(fields, flag)
form.execute()
# Result
wing_A[1] = Clat, Cm0t, azlt, xact = [i[2] for i in list(form)]
# Set a specific parameter
elif par == 'copy':
wing_A[1] = wing_A[0]
elif par == 'Clat':
Clat = appuifw.query(u'Set alfa lift coeff. [1/deg]:',
'float', wing_A[1][0])
wing_A[1][0] = Clat
elif par == 'Cm0t':
Cm0t = appuifw.query(u'Set Zero-lift moment coeff. [ ]:',
'float', wing_A[1][1])
wing_A[1][1] = Cm0t
elif par == 'azlt':
azlt = appuifw.query(u'Set alfa zero lift [deg]:',
'float', wing_A[1][2])
wing_A[1][2] = azlt
elif par == 'xact':
xact = appuifw.query(u'Set aero. center pos.[of Ct]:',
'float', wing_A[1][3])
wing_A[1][3] = xact
# Set fuselage parameters
if type == 'fuse':
fields = [(u'Zero-lift Moment coeff. [ ]', 'float', fuselage[0]),
(u'Alpha moment coeff. [1/deg]', 'float', fuselage[1])]
flag = appuifw.FFormEditModeOnly + appuifw.FFormDoubleSpaced
form = appuifw.Form(fields, flag)
form.execute()
# Result
fuselage = Cm0f, Cmaf = [i[2] for i in list(form)]
# Set tail parameters
if type == 'tail_h':
fields = [(u'Alfa lift coeff. 2D [1/deg]', 'float', tail[0][0]),
(u'Wingspan [m]', 'float', tail[0][1]),
(u'Surface [m^2]', 'float', tail[0][2]),
(u'Efficiency number [ ]', 'float', tail[0][3]),
(u'Dinamic pressures ratio [ ]', 'float', tail[0][4])]
flag = appuifw.FFormEditModeOnly + appuifw.FFormDoubleSpaced
form = appuifw.Form(fields, flag)
form.execute()
# Result
fuselage = Cm0f, Cmaf = [i[2] for i in list(form)]
def wing_draw():
"""Draws the wing."""
if not any(wing_G):
wing_set('geom', 'all')
if not any(wing_G):
return
b, cr, ct, sweep, iw, ew, eps = wing_G
WC = lambda y: cr + y * (ct - cr) * 2.0/b # Wing chord distribution
buffer.clear()
font = (None, 30)
color0 = (0, 0, 0) # Text color
color1 = (0, 0, 255) # Wing color
color2 = (255, 0, 0) # Chords color
color3 = (150, 150, 150) # Legend color
s_width = width - 10 # Scaled width, for the border
# Dimensionless ratio
if cr > b/2:
DLR = height/2 / cr
else:
DLR = s_width / b
b, cr, ct = [(i * DLR) for i in (b, cr, ct)]
# Draws axes
y0 = height/3 # Origin of axes
x0 = width/2
buffer.line((0, y0, width, y0), outline=color0)
buffer.line((x0, 0, x0, height), outline=color0)
# Right leading edge
RLE = (x0, y0,
x0 + b/2, y0 + b/2 * tan(sweep*pi/180))
# Right trailing edge
RTE = (x0 + b/2, y0 + b/2 * tan(sweep*pi/180) + ct,
x0, y0 + cr)
# Left tip chord
LTC = (x0 - b/2, y0 + b/2 * tan(sweep*pi/180) + ct,
x0 - b/2, y0 + b/2 * tan(sweep*pi/180))
# Draws left/right wings
buffer.polygon(RLE + RTE + LTC, outline=color1, width=2)
# Calculates the Mean Aerodynamic Chord
# I divide by DLR, so I can integrate for smaller intervals
b, cr, ct = [(i / DLR) for i in (b, cr, ct)]
Sw = 2 * integrate(lambda y: WC(y), (0, b/2))
MAC = 2 / Sw * integrate(lambda y: WC(y)**2, (0, b/2)) * DLR
y_MAC = 2 / Sw * integrate(lambda y: y * WC(y), (0, b/2)) * DLR
b, cr, ct = [(i * DLR) for i in (b, cr, ct)]
# Draws the MAC
points = (x0 + y_MAC, y0 + (b/2 - y_MAC) * tan(sweep*pi/180),
x0 + y_MAC, y0 + (b/2 - y_MAC) * tan(sweep*pi/180) + MAC)
buffer.line(points, outline=color2, width=2)
# Shows the legend
line_MAC = (x0 + y_MAC, y0 + (b/2 - y_MAC) * tan(sweep*pi/180),
x0 + y_MAC, y0 - 20)
text_MAC = (x0 + y_MAC, y0 - 20)
buffer.line(line_MAC, outline=color3)
buffer.text(text_MAC, u'M.A.C.', fill=color3)
draw()
def wing_info(type):
"""
Calculates and shows geometrical informations about the wing.
type can be:
- 'geom': shows geometrical info
- 'aero': shows aerodynamic info
wing_A cointains:
- wing_A[0]: aerodynamical parameters at root chord
- wing_A[1]: aerodynamical parameters at tip chord
parameters ending with *r are referred to the root chord
parameters ending with *t are referred to the tip chord
"eps" is the twist angle, while "twist" is the law of twist
"""
# Geometrical info
if type == 'geom':
if not wing_G: wing_set('geom', 'all')
b, cr, ct, sweep, iw, ew, eps = wing_G
WC = lambda y: cr + y * (ct - cr) * 2.0/b # Wing chord distribution
Sw = 2 * integrate(lambda y: WC(y), (0, b/2))
AR = b**2 / Sw # Aspect ratio
TR = ct / cr # Taper ratio
MAC = 2 / Sw * integrate(lambda y: WC(y)**2, (0, b/2))
y_MAC = 2 / Sw * integrate(lambda y: y * WC(y), (0, b/2))
fields = [
(u'Aspect ratio [ ]', 'text', u'%.2f' % AR),
(u'Tape ratio [ ]', 'text', u'%.2f' % TR),
(u'Wing surface [m^2]', 'text', u'%.2f' % Sw),
(u'Mean Aerodynamic Chord [m]', 'text', u'%.2f' % MAC),
(u'y of M.A.C. [% of wing]', 'text', u'%.1f' % (y_MAC * 200 / b))]
flag = appuifw.FFormDoubleSpaced
form = appuifw.Form(fields, flag)
form.execute()
# Aerodynamical info
elif type == 'aero':
if not wing_A: wing_set('aero', 'all')
# Load geometric and aerodynamic parameters
b, cr, ct, sweep, iw, ew, eps = wing_G
WC = lambda y: cr + y * (ct - cr) * 2.0/b # Wing chord distribution
Clar, Cm0r, azlr, xacr = wing_A[0]
Clat, Cm0t, azlt, xact = wing_A[1]
# Laws of variation from root to tip
Cla = lambda y: Clar + y * (Clat - Clar) / (b/2)
Cm0 = lambda y: Cm0r + y * (Cm0t - Cm0r) / (b/2)
azl = lambda y: azlr + y * (azlt - azlr) / (b/2)
xac = lambda y: xacr + y * (xact - xacr) / (b/2)
twist = lambda y: y * eps / (b/2)
# Lift coefficient of 2D wing (without downwash), weighted mean
par = (b, cr, ct)
integ = lambda y: WC(y)
Sw = 2 * integrate(integ, (0, b/2))
integ = lambda y: Cla(y) * WC(y)
Claw = 2 / Sw * integrate(integ, (0, b/2))
# Lift coefficient of 3D wing (elliptical wing formula)
AR = b**2 / Sw
if not ew: ew = 1 # Elliptical wing
CLa = Claw / (1 + (57.296*Claw/pi/ew/AR))
# Alfa zero Lift of wing
integ = lambda y: (azl(y) - twist(y)) * WC(y)
azL = 2 / Sw * integrate(integ, (0, b/2))
# Moment coefficient (AC) of wing
MAC = 2 / Sw * integrate(lambda y: WC(y)**2, (0, b/2))
integ = lambda y: (Cm0(y) * WC(y)**2 -
pi * (azL - twist(y) - azl(y)) * WC(y) * xac(y))
Cmacw = 2 / (Sw * MAC) * integrate(integ, (0, b/2))
# Aerodynamic center
integ = lambda y: Cla(y) * xac(y) * WC(y)
xAC = (2 / Sw / CLa * integrate(integ, (0, b/2)))
integ = lambda y: Cla(y) * y * WC(y)
yAC = 2 / Sw / CLa * integrate(integ, (0, b/2))
# Show results
fields = [
(u'Lift coefficient of 2D wing [1/deg]', 'text', u'%.4f' % Claw),
(u'Lift coefficient of 3D wing [1/deg]', 'text', u'%.4f' % CLa),
(u'Moment coefficient (AC) of wing [ ]', 'text', u'%.4f' % Cmacw),
(u'Alfa zero Lift of wing [deg]', 'text', u'%.3f' % azL),
(u'x of aero. center [%MAC]', 'text', u'%.2f' % xAC),
(u'y of aero. center [%b]', 'text', u'%.2f' % yAC)]
flag = appuifw.FFormDoubleSpaced
form = appuifw.Form(fields, flag)
form.execute()
def rotate_screen():
"""Rotate the screen and rebuilt the canvas"""
global width, height, c, buffer
screen = appuifw.app.orientation
if screen == 'landscape':
appuifw.app.orientation = 'portrait'
else:
appuifw.app.orientation = 'landscape'
del c
c = appuifw.Canvas(redraw_callback=draw)
width, height = c.size
buffer = buffer.resize(c.size)
def set_altitude(um):
"""Set altitude (um is unit of measurement)"""
if um == 'm':
altitude = appuifw.query(u'Insert altitude [m]:', 'float')
tab_4(altitude)
elif um == 'ft':
altitude_ft = appuifw.query(u'Insert altitude [ft]:', 'float')
altitude = altitude_ft * 0.3048
tab_4(altitude)
if altitude == None:
appuifw.note(u'Altitude not set!', 'error')
return
def quit():
e32.Ao_lock().signal()
def tab_0():
"""Starting graphics"""
buffer.clear()
color = ((0, 0, 0),
(0, 255, 0),
(0, 150, 0))
font = ((u'Nokia Hindi TitleSmBd S6', 30),
(u'Nokia Hindi TitleSmBd S6', 15),
(u'Nokia Hindi TitleSmBd S6', 15))
text = (u'NACA PyFoil',
u'By Ale152',
u'www.wirgilio.it')
box = (buffer.measure_text(text[0], font[0]),
buffer.measure_text(text[1], font[1]),
buffer.measure_text(text[2], font[2]))
position = (((width-box[0][0][2])/2, 30),
((width-box[1][0][2])/2, 50),
((width-box[2][0][2])/2, 65))
buffer.text(position[0], text[0], font=font[0], fill=color[0])
buffer.text(position[1], text[1], font=font[1], fill=color[2])
buffer.text(position[2], text[2], font=font[2], fill=color[2])
s_width = width - 40 # Scaled width, for the border
airfoil = [None, None, (0.12, 0, 0)] # NACA intro
for x in xrange(s_width):
x = float(x)/s_width
# Airfoil (U: Upper, L: Lower)
xL = xU = 20 + x * s_width
yU = height/2 - thickness(x, airfoil) * s_width
yL = height/2 + thickness(x, airfoil) * s_width
buffer.line((xU, yU, xL, yL), outline=color[1], width=2)
buffer.point((xL, yL), outline=color[2], width=2)
draw()
def tab_1():
"""NACA Plot tab"""
if not airfoil[0]:
buffer.clear()
position = (10, 30)
color1 = (0, 0, 100) # Text
color2 = (0, 0, 0) # Axes
color3 = (80, 80, 80) # Units
color4 = (0, 0, 200) # Function
buffer.text(position, u'Please set a NACA from menu', fill=color1)
# Draws an axes system (origin in [w/3, h/2])
for k in range(30):
xA = k * width/30
yA = height/2
xO = width/3
yO = k * (height-50)/30
buffer.line((xA, yA-2, xA, yA+3), outline=color3)
buffer.line((xO-2, 50+yO, xO+3, 50+yO), outline=color3)
buffer.line((width/3, 50, width/3, height), outline=color2)
buffer.line((0, height/2, width, height/2), outline=color2)
# Draws a function
for t in xrange(900):
t = float(t)
x = t * cos(t*pi/180) / 15
y = t * sin(t*pi/180) / 15
buffer.point((width/3 + x, height/2 + y), outline=color4, width=2)
draw()
return
else:
NACA_plot()
def tab_2():
"""Dimensionless goup form"""
buffer.clear()
position = (10, 30)
color1 = (0, 0, 100)
color2 = (200, 0, 0)
buffer.text(position, u'Select a group from menu', fill=color1)
draw()
def tab_3():
"""Wings"""
buffer.clear()
position = (10, 30)
color1 = (0, 0, 100)
color2 = (200, 0, 0)
buffer.text(position, u'Set wing parameter from menu', fill=color1)
draw()
def tab_4(altitude=None):
"""Shows a form to calculate ISA parameters"""
if altitude == None:
buffer.clear()
position = (10, 30)
color = (0, 0, 100)
buffer.text(position, u'Please set altitude from menu', fill=color)
font = (u'Nokia Hindi TitleSmBd S6', 30)
isa_text = [u'International', u'Standard', u'Atmosphere']
buffer.text((10, 70), isa_text[0], font=font, fill=color)
buffer.text((30, 100), isa_text[1], font=font, fill=color)
buffer.text((50, 130), isa_text[2], font=font, fill=color)
draw()
return
temp, press, dens = ISA(altitude)
fields = [(u'Temperature [K]', 'text', u'%.3f' % temp),
(u'Temperature [degC]', 'text', u'%.3f' % (temp - 273.15)),
(u'Pressure [Pa]', 'text', u'%.3f' % press),
(u'Density [kg/m^3]', 'text', u'%.3f' % dens)]
flag = appuifw.FFormDoubleSpaced
form = appuifw.Form(fields, flag)
form.execute()
def set_tab(index):
"""Set tab function"""
if index == 0: # Starting
tab_0()
appuifw.app.menu = menu_0
elif index == 1: # NACA Plot
tab_1()
appuifw.app.menu = menu_1
elif index == 2: # Dim.less goup
tab_2()
appuifw.app.menu = menu_2
elif index == 3: # ISA
tab_3()
appuifw.app.menu = menu_3
elif index == 4: # ISA
tab_4()
appuifw.app.menu = menu_4
tabs = [u'Intro', u'Plot', u'Group', u'Wing', u'ISA']
appuifw.app.set_tabs(tabs, set_tab)
# Starting menu
menu_0 = [(u'Rotate screen', rotate_screen),
(u'About', lambda: appuifw.note(u'Created by Ale152', 'info')),
(u'Quit', quit)]
# NACA Plot menu
menu_1 = [(u'Set NACA', NACA_set),
(u'Plot', NACA_plot),
(u'Export IMG', NACA_export),
(u'Rotate screen', rotate_screen),
(u'Quit', quit)]
# Dim.less group menu
menu_2 = [(u'Reynolds', Reynolds),
(u'Mach', Mach),
(u'Froude', Froude),
(u'Rotate screen', rotate_screen),
(u'Quit', quit)]
# Wings menu
menu_3 = [(u'Set wing geom', (
(u'All', lambda: wing_set('geom', 'all')),
(u'Wingspan', lambda: wing_set('geom', 'wingspan')),
(u'Chords', lambda: wing_set('geom', 'chords')),
(u'Sweep', lambda: wing_set('geom', 'sweep')),
(u'Incidence', lambda: wing_set('geom', 'incid')),
(u'Efficiency', lambda: wing_set('geom', 'effic')),
(u'Twist', lambda: wing_set('geom', 'twist')))),
(u'Set wing aero (root)', (
(u'All', lambda: wing_set('aero_r', 'all')),
(u'Copy from tip', lambda: wing_set('aero_r', 'copy')),
(u'Alfa lift coeff.', lambda: wing_set('aero_r', 'Clar')),
(u'Alfa moment coeff.', lambda: wing_set('aero_r', 'Cm0r')),
(u'Alfa zero lift', lambda: wing_set('aero_r', 'azlr')),
(u'Aero. center pos.', lambda: wing_set('aero_r', 'xacr')))),
(u'Set wing aero (tip)', (
(u'All', lambda: wing_set('aero_t', 'all')),
(u'Copy from root', lambda: wing_set('aero_t', 'copy')),
(u'Alfa lift coeff.', lambda: wing_set('aero_t', 'Clat')),
(u'Alfa moment coeff.', lambda: wing_set('aero_t', 'Cm0t')),
(u'Alfa zero lift', lambda: wing_set('aero_t', 'azlt')),
(u'Aero. center pos.', lambda: wing_set('aero_t', 'xact')))),
(u'Set horiz. tail', (
(u'All', lambda: wing_set('aero_t', 'all')),
(u'Copy from root', lambda: wing_set('aero_t', 'copy')),
(u'Alfa lift coeff.', lambda: wing_set('aero_t', 'Clat')),
(u'Alfa moment coeff.', lambda: wing_set('aero_t', 'Cm0t')),
(u'Alfa zero lift', lambda: wing_set('aero_t', 'azlt')),
(u'Aero. center pos.', lambda: wing_set('aero_t', 'xact')))),
(u'Show geom info', lambda: wing_info('geom')),
(u'Show aero info', lambda: wing_info('aero')),
(u'Draw wing', wing_draw),
(u'Rotate screen', rotate_screen),
(u'Quit', quit)]
# ISA menu
menu_4 = [(u'Set altitude', (
(u'Meters', lambda: set_altitude('m')),
(u'Feet', lambda: set_altitude('ft')))),
(u'Rotate screen', rotate_screen),
(u'Quit', quit)]
set_tab(0)
app_lock = e32.Ao_lock()
app_lock.wait()